Design of potent beta-lactamase inhibitors by phage display of beta-lactamase inhibitory protein
- PMID: 10748011
- DOI: 10.1074/jbc.M001285200
Design of potent beta-lactamase inhibitors by phage display of beta-lactamase inhibitory protein
Abstract
Beta-lactamase inhibitory protein (BLIP) binds tightly to several beta-lactamases including TEM-1 beta-lactamase (K(i) 0.1 nm). The TEM-1 beta-lactamase/BLIP co-crystal structure indicates that two turn regions in BLIP insert into the active site of beta-lactamase to block the binding of beta-lactam antibiotics. Residues from each turn, Asp(49) and Phe(142), mimic interactions made by penicillin G when bound in the beta-lactamase active site. Phage display was used to determine which residues within the turn regions of BLIP are critical for binding TEM-1 beta-lactamase. The sequences of a set of functional mutants from each library indicated that a few sequence types were predominant. These BLIP mutants exhibited K(i) values for beta-lactamase inhibition ranging from 0.01 to 0.2 nm. The results indicate that even though BLIP is a potent inhibitor of TEM-1 beta-lactamase, the wild-type sequence of the active site binding region is not optimal and that derivatives of BLIP that bind beta-lactamase extremely tightly can be obtained. Importantly, all of the tight binding BLIP mutants have sequences that would be predicted theoretically to form turn structures.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous