Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 7;275(27):20717-25.
doi: 10.1074/jbc.M909895199.

Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1

Affiliations
Free article

Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1

W Zhang et al. J Biol Chem. .
Free article

Abstract

Caveolin-1 is a principal component of caveolae membranes that may function as a transformation suppressor. For example, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (D7S522; 7q31.1) that is deleted in human cancers, including mammary carcinomas. However, little is known about the role of caveolins in regulating cell movement, a critical parameter in determining metastatic potential. Here, we examine the role of caveolin-1 in cell movement. For this purpose, we employed an established cellular model, MTLn3, a metastatic rat mammary adenocarcinoma cell line. In this system, epidermal growth factor (EGF) stimulation induces rapid lamellipod extension and cell migration. Interestingly, we find that MTLn3 cells fail to express detectable levels of endogenous caveolin-1. To restore caveolin-1 expression in MTLn3 cells efficiently, we employed an inducible adenoviral gene delivery system to achieve tightly controlled expression of caveolin-1. We show here that caveolin-1 expression in MTLn3 cells inhibits EGF-stimulated lamellipod extension and cell migration and blocks their anchorage-independent growth. Under these conditions, EGF-induced activation of the p42/44 mitogen-activated protein kinase cascade is also blunted. Our results suggest that caveolin-1 expression in motile MTLn3 cells induces a non-motile phenotype.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources