Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 May 1;1465(1-2):140-51.
doi: 10.1016/s0005-2736(00)00135-8.

Sodium transport in plant cells

Affiliations
Free article
Review

Sodium transport in plant cells

E Blumwald et al. Biochim Biophys Acta. .
Free article

Abstract

Salinity limits plant growth and impairs agricultural productivity. There is a wide spectrum of plant responses to salinity that are defined by a range of adaptations at the cellular and the whole-plant levels, however, the mechanisms of sodium transport appear to be fundamentally similar. At the cellular level, sodium ions gain entry via several plasma membrane channels. As cytoplasmic sodium is toxic above threshold levels, it is extruded by plasma membrane Na(+)/H(+) antiports that are energized by the proton gradient generated by the plasma membrane ATPase. Cytoplasmic Na(+) may also be compartmentalized by vacuolar Na(+)/H(+) antiports. These transporters are energized by the proton gradient generated by the vacuolar H(+)-ATPase and H(+)-PPiase. Here, the mechanisms of sodium entry, extrusion, and compartmentation are reviewed, with a discussion of recent progress on the cloning and characterization, directly in planta and in yeast, of some of the proteins involved in sodium transport.

PubMed Disclaimer

MeSH terms

LinkOut - more resources