Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun 23;275(25):18830-5.
doi: 10.1074/jbc.M001408200.

Kinetics of manganese lipoxygenase with a catalytic mononuclear redox center

Affiliations

Kinetics of manganese lipoxygenase with a catalytic mononuclear redox center

C Su et al. J Biol Chem. .

Abstract

Manganese lipoxygenase was isolated from the take-all fungus, Gaeumannomyces graminis, and the oxygenation mechanism was investigated. A kinetic isotope effect, k(H)/k(D) = 21-24, was observed with [U-(2)H]linoleic acid as a substrate. The relative biosynthesis of (11S)-hydroperoxylinoleate (11S-HPODE) and (13R)-hydroperoxylinoleate (13R-HPODE) was pH-dependent and changed by [U-(2)H]linoleic acid. Stopped-flow kinetic traces of linoleic and alpha-linolenic acids indicated catalytic lag times of approximately 45 ms, which were followed by bursts of enzyme activity for approximately 60 ms and then by steady state (k(cat) approximately 26 and approximately 47 s(-1), respectively). 11S-HPODE was isomerized by manganese lipoxygenase to 13R-HPODE and formed from linoleic acid at the same rates (k(cat) 7-9 s(-1)). Catalysis was accompanied by collisional quenching of the long wavelength fluorescence (640-685 nm) by fatty acid substrates and 13R-HPODE. Electron paramagnetic resonance (EPR) of native manganese lipoxygenase showed weak 6-fold hyperfine splitting superimposed on a broad resonance indicating two populations of Mn(II) bound to protein. The addition of linoleic acid decreased both components, and denaturation of the lipoxygenase liberated approximately 0.8 Mn(2+) atoms/lipoxygenase molecule. These observations are consistent with a mononuclear Mn(II) center in the native state, which is converted during catalysis to an EPR silent Mn(III) state. We propose that manganese lipoxygenase has kinetic and redox properties similar to iron lipoxygenases.

PubMed Disclaimer

Publication types

LinkOut - more resources