Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar 11;355(9207):892-5.
doi: 10.1016/S0140-6736(99)09095-9.

Relation between tissue structure and imposed electrical current flow in cervical neoplasia

Affiliations

Relation between tissue structure and imposed electrical current flow in cervical neoplasia

B H Brown et al. Lancet. .

Abstract

Background: When an electrical potential is applied to human tissue, the pattern of the resulting current flow is determined by the shapes, arrangements, and internal structure of the tissue cells. By measurement of the electrical current patterns over a range of frequencies, and use of an inverse modelling procedure, electrical variables describing the tissue structure can be calculated. We used this method to develop a screening technique for the detection of cervical precancers.

Methods: We used a pencil probe (diameter 5 mm) to measure electrical impedance spectra from eight points on the cervix in 124 women with abnormal cervical smears. Variables that should be sensitive to the expected tissue changes were calculated. These were compared with the colposcopic results.

Findings: The measured electrical impedance changes were those predicted on the basis of the expected tissue structures. Measurements made on normal squamous tissues were well separated from those made on precancerous tissues. We constructed receiver-operating-characteristic curves, comparing measurements made on normal tissue and that showing cervical intraepithelial neoplasia grade 2/3; the area under the curve was 0.951. These groups of women could be separated with a sensitivity of 0.92 and a specificity of 0.92.

Interpretation: Characteristics of the electrical impedance spectra of tissues can be explained by changes in cell arrangements (layering) and in the size of the nuclei. This relation opens the way to deriving tissue structure from electrical impedance spectral measurements. We show that this approach can be used to give good separation of normal and precancerous cervical tissues.

PubMed Disclaimer