Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;83(4):2171-8.
doi: 10.1152/jn.2000.83.4.2171.

Brain nitric oxide changes after controlled cortical impact injury in rats

Affiliations
Free article

Brain nitric oxide changes after controlled cortical impact injury in rats

L Cherian et al. J Neurophysiol. 2000 Apr.
Free article

Abstract

Nitric oxide (NO) and the NO end products, nitrate and nitrite, were measured at the impact site after a 5-m/s, 3-mm deformation controlled cortical impact injury in rats. Immediately after the impact injury and the NO and microdialysis probes could be replaced, there was an increase from baseline in NO concentration of 83 +/- 16 (SE) nM, compared with 0.5 +/- 4 nM in the sham injured animals (P < 0.001). This marked increase in NO occurred at the time of the initial rise in blood pressure (BP) and intracranial pressure (ICP) in response to the injury. After the initial increase in BP and ICP, the BP decreased and stabilized at a value which was approximately 20 mmHg below the preinjury values, and ICP plateaued at an average value of 20 mmHg, compared with 8 mmHg in the sham-injured animals. This provided an average cerebral perfusion pressure of 40-50 mmHg, compared with 65-75 mmHg for the sham-injured animals. These values were relatively constant for the remainder of the 3-h monitoring period. The NO values also stabilized during this time period. By 1 h after the impact injury the NO concentration measured directly using the NO electrode had decreased from baseline values by an average value of 25 +/- 6 nM. NO concentration remained significantly lower than baseline values throughout the remainder of the 3-h monitoring period. The concentration of nitrate/nitrite in the dialysate fluid also decreased by an average value of 341 +/- 283 nM 20-40 min after the injury. Dialysate nitrite/nitrate concentrations remained less than the preinjury baseline values throughout the remainder of the 3-h monitoring period. Preinjury treatment with L-nitro-arginine methyl ester (L-NAME) blunted the injury-induced increase in NO and resulted in more severe immediate intracranial hypertension and more severe systemic hypotension at one hour after injury. Mortality was also 67% with L-NAME pretreatment, compared with 1% in untreated animals.

PubMed Disclaimer

LinkOut - more resources