Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;83(4):2239-59.
doi: 10.1152/jn.2000.83.4.2239.

Physiological properties of the lamina I spinoparabrachial neurons in the rat

Affiliations
Free article

Physiological properties of the lamina I spinoparabrachial neurons in the rat

H Bester et al. J Neurophysiol. 2000 Apr.
Free article

Abstract

Single-unit extracellular recordings of spino-parabrachial (spino-PB) neurons (n = 53) antidromically driven from the contralateral parabrachial (PB) area were performed in the lumbar cord in anesthetized rats. All the spino-PB neurons were located in the lamina I of the dorsal horn. Their axons exhibited conduction velocities between 2.8 and 27.8 m/s, in the thin myelinated fibers range. They had an extremely low spontaneous activity (median = 0. 064 Hz) and a small excitatory receptive field (</=2 toes or pads). They were all activated by both peripheral A (mainly Adelta) and C fibers after intense transcutaneous electrical stimulation. Their discharge always increased in response to noxious natural stimuli of increasing intensities. The great majority (75%) of spino-PB neurons were nociceptive specific, i.e., they were excited only by noxious stimuli. The remaining (25%) still were excited primarily by noxious stimuli but also responded moderately to innocuous stimuli. Almost all spino-PB neurons (92%, 49/53) were activated by both mechanical and heat noxious stimuli. Among them, 35% were in addition moderately activated by noxious cold (thresholds between +20 and -10 degrees C). Only (8%, 4/53) responded exclusively to noxious heat. Spino-PB neurons clearly encoded the intensity of mechanical (n = 39) and thermal (n = 38) stimuli in the noxious range, and most of the individual stimulus-response functions were monotonic and positive up to 40/60 N. cm(-2) and 50 degrees C, respectively. For the mechanical modality, the mean threshold was 11.5 +/- 1.25 N. cm(-2) (mean +/- SE), the response increased almost linearly with the logarithm of the pressure between 10 and 60 N. cm(-2), the mean p(50) (pressure evoking 50% of the maximum response) and the maximum responsiveness were: 30 +/- 2.4 N. cm(-2) and 40.5 +/- 5 Hz, respectively. For the thermal modality, the mean threshold was 43.6 +/- 0.5 degrees C, the mean curve had a general sigmoid aspect, the steepest portion being in the 46-48 degrees C interval, the mean t(50) and the maximum responsiveness were: 47.4 +/- 0.3 degrees C and 40 +/- 4.4 Hz, respectively. Most of the spino-PB neurons tested (13/16) had their noxiously evoked responses clearly inhibited by heterotopic noxious stimuli. The mean response to noxious stimuli during heterotopic stimuli was 31.7 +/- 6.1% of the control response. We conclude that the nociceptive properties of the lamina I spino-PB neurons are reflected largely by those of PB neurons that were suggested to be involved in autonomic and emotional/aversive aspects of pain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources