Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;21(5):445-54.
doi: 10.1046/j.1365-313x.2000.00698.x.

A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis

Affiliations
Free article

A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis

C P Bonin et al. Plant J. 2000 Mar.
Free article

Abstract

L-Fucose is a monosaccharide found as a component of glycoproteins and cell wall polysaccharides in higher plants. The MUR1 gene of Arabidopsis thaliana encodes a GDP-D-mannose 4,6-dehydratase catalyzing the first step in the de novo synthesis of GDP-L-fucose from GDP-D-mannose (Bonin et al. 1997, Proc. Natl Acad. Sci. USA, 94, 2085-2090). Plant genes encoding the subsequent steps in L-fucose synthesis (3,5-epimerization and 4-reduction) have not been described previously. Based on sequence similarities to a bacterial gene involved in capsule synthesis we have cloned a gene from Arabidopsis, now designated GER1, which encodes a bifunctional 3, 5-epimerase-4-reductase in L-fucose synthesis. The combined action of the MUR1 and GER1 gene products converts GDP-D-mannose to GDP-L-fucose in vitro demonstrating that this entire nucleotide-sugar interconversion pathway could be reconstituted using plant genes expressed in Escherichia coli. In vitro assays indicated that the GER1 protein does not act as a GDP-D-mannose 3, 5-epimerase, an enzymatic activity involved in the de novo synthesis of GDP-L-galactose and L-ascorbic acid. Similarly, L-ascorbate levels in GER1 antisense plants were unchanged indicating that GDP-D-mannose 3,5-epimerase is encoded by a separate gene.

PubMed Disclaimer

Publication types

MeSH terms