Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Apr;57(4):1295-8.
doi: 10.1046/j.1523-1755.2000.00965.x.

Mineralocorticoid receptor knockout mice: lessons on Na+ metabolism

Affiliations
Free article
Review

Mineralocorticoid receptor knockout mice: lessons on Na+ metabolism

S Berger et al. Kidney Int. 2000 Apr.
Free article

Abstract

The mineralocorticoid receptor (MR) binds aldosterone and glucocorticoids with equal affinity. In aldosterone target tissues, like the epithelial cells of the distal colon and the principal cells of the collecting ducts in the kidney, the MR is protected from glucocorticoids by the action of the enzyme 11beta-hydroxysteroid-dehydrogenase type 2 (11betaOHSD2), allowing aldosterone to specifically activate the receptor. However, in MR-expressing cells, which lack 11betaOHSD2, like the neurons of the limbic system in the brain, MR is mainly activated by glucocorticoids. MR knockout mice die in the second week after birth, showing at day 8 symptoms of pseudohypoaldosteronism with hyponatremia, hyperkalemia, high renal salt wasting, and a strongly activated renin-angiotensin-aldosterone system (RAAS). The activity of the amiloride-sensitive epithelial Na+ channel (ENaC) is strongly reduced in colon and kidney, but there is no down-regulation of the mRNA abundance of the three ENaC subunits. Daily subcutaneous injections of isotonic NaCl solution until weaning and continued oral NaCl supply lead to survival of the MR knockout mice. The NaCl-rescued MR knockout mice display a strongly enhanced fractional renal excretion of Na+, hyperkalemia, and a persistently strongly activated RAAS. There is almost no renal ENaC activity. The renal mRNA abundance of alphaENaC is reduced by 30%, whereas betaENaC and gammaENaC are not altered.

PubMed Disclaimer

Publication types

LinkOut - more resources