Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;36(1):10-23.
doi: 10.1046/j.1365-2958.2000.01822.x.

AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways

Affiliations
Free article

AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways

U Römling et al. Mol Microbiol. 2000 Apr.
Free article

Abstract

The regulatory programme of multicellular behaviour in Salmonella typhimurium is determined by mutations in the agfD promoter. AgfD has already been identified to regulate the extracellular matrix associated with the multicellular morphotype composed of thin aggregative fimbriae (agf). To detect additional components contributing to the multicellular morphotype in S. typhimurium, we constructed a mutant in agfD, the positive transcriptional regulator of the agfBA(C) operon encoding for fimbrial subunit proteins. The agfD mutant lacked any form of multicellular behaviour as shown by analysis at the macroscopic and microscopic level. In contrast, the agfBA mutant unable to form thin aggregative fimbriae still maintained long-range intercellular adhesion. Promoter and expression analysis revealed that the genes downstream of agfD agfEFG most likely did not contribute to the remaining aggregative behaviour. Screening of transcriptional fusions for agfD dependency uncovered adrA, a homologue of yaiC in Escherichia coli. Environmental factors regulating adrA correspond to the regulation of thin aggregative fimbriae. AdrA is a putative transmembrane protein with a C-terminal GGDEF domain of unknown function although it is present in over 50 bacterial proteins. AdrA mutant cells, which still formed thin aggregative fimbriae with all binding characteristics, exhibited community behaviour but, unlike the wild type, lacked long-range intercellular adhesion. An agfBA adrA double mutant behaved like the agfD mutant. Therefore, it was concluded that agfD regulates at least two independent pathways contributing to the multicellular morphotype in S. typhimurium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources