Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;4(1):52-7.
doi: 10.1109/4233.826859.

DataFoundry: information management for scientific data

Affiliations

DataFoundry: information management for scientific data

T Critchlow et al. IEEE Trans Inf Technol Biomed. 2000 Mar.

Abstract

Data warehouses and data marts have been successfully applied to a multitude of commercial business applications. They have proven to be invaluable tools by integrating information from distributed, heterogeneous sources and summarizing this data for use throughout the enterprise. Although the need for information dissemination is as vital in science as in business, working warehouses in this community are scarce because traditional warehousing techniques do not transfer to scientific environments. There are two primary reasons for this difficulty. First, schema integration is more difficult for scientific databases than for business sources, because of the complexity of the concepts and the associated relationships. While this difference has not yet been fully explored, it is an important consideration when determining how to integrate autonomous sources. Second, scientific data sources have highly dynamic data representations (schemata). When a data source participating in a warehouse changes its schema, both the mediator transferring data to the warehouse and the warehouse itself need to be updated to reflect these modifications. The cost of repeatedly performing these updates in a traditional warehouse, as is required in a dynamic environment, is prohibitive. This paper discusses these issues within the context of the DataFoundry project, an ongoing research effort at Lawrence Livermore National Laboratory. DataFoundry utilizes a unique integration strategy to identify corresponding instances while maintaining differences between data from different sources, and a novel architecture and an extensive meta-data infrastructure, which reduce the cost of maintaining a warehouse.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources