Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun 16;275(24):18489-94.
doi: 10.1074/jbc.M908096199.

Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system

Affiliations
Free article

Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system

C Caracó et al. J Biol Chem. .
Free article

Abstract

[(18)F]-2-Fluoro-2-deoxyglucose (FDG) is a glucose analog currently utilized for positron emission tomography imaging studies in humans. FDG taken up by the liver is rapidly released. This property is attributed to elevated glucose-6-phosphatase (Glc-6-Pase) activity. To characterize this issue we studied the relationship between Glc-6-Pase activity and FDG release kinetics in a cell culture system. We overexpressed the Glc-6-Pase catalytic unit in a Glc-6-Pase-deficient mouse hepatocyte (Ho-15) and in A431 tumor cell lines. Glc-6-Pase enzyme activity and FDG release rates were determined in cells transfected with the Glc-6-Pase gene (Ho-15-D3 and A431-AC3), in mock-transfected cells of both cell lines, and in wild-type mouse hepatocytes (WT10) as control. Although the highest level of Glc-6-Pase activity was measured in A431-AC3, Ho-15-D3 cells showed much faster FDG release rates. The faster FDG release correlated with the level of glucose 6-phosphate transporter (Glc-6-PT) mRNA, which was found to be expressed at higher levels in Ho-15 compared with A431 cells. Overexpression of Glc-6-PT in A431-AC3 produced a dramatic increase in FDG release compared with control cells. This study gives the first direct evidence that activity of the Glc-6-Pase complex can be quantified in vivo by measuring FDG release. Adequate levels of Glc-6-Pase catalytic unit and Glc-6-PT are required for this function. FDG-positron emission tomography may be utilized to evaluate functional status of the Glc-6-Pase complex.

PubMed Disclaimer

LinkOut - more resources