Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Apr 12;9(6):1001-7.
doi: 10.1093/hmg/9.6.1001.

Large and diverse numbers of human diseases with HIKE mutations

Affiliations
Review

Large and diverse numbers of human diseases with HIKE mutations

F D Ciccarelli et al. Hum Mol Genet. .

Abstract

HIKE is a highly conserved sequence motif identified as a candidate pleckstrin-homology (PH) domain binding site in Gbeta proteins, protein kinases, ankyrin and kinesin. HIKE motifs occur also in gelsolin, neurogranin, neuromodulin and in the PH domain of Bruton tyrosin kinase (BTK). Phosphatidylinositol-binding sequences more distantly related to HIKE are present in gelsolin, in the G protein-coupled receptor kinase 4 and in Trop-2. HIKE regions have been demonstrated to bind both proteins and lipids, and to regulate the interaction of Gbeta, neuromodulin and the BTK PH domain with downstream effectors and the cell membrane. Remarkably, mutations of the HIKE regions are common in diverse human genetic diseases. Several HIKE mutations in protein kinases lead to constitutive activation and cellular transformation, e.g. in MEN-2B, acute myeloid and mast cell leukemias, hereditary papillary renal carcinomas and multiple myeloma. Kinase-inactivating HIKE mutations cause Hirschsprung's disease, piebaldism, insulin resistance and developmental dysplasias. HIKE mutations in the PH domain of BTK lead to X-linked agammaglobulinemia, and different forms of amyloidosis are caused by mutations of HIKE-bearing molecules, for example gelsolin, Ret and Trop-2. Thus, quite diverse genetic diseases might share common molecular mechanisms. These include altered interactions of the mutated molecules with downstream effectors or the cell membrane, and defects in intracellular transport.

PubMed Disclaimer

Publication types