Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 25;39(16):4740-5.
doi: 10.1021/bi992028x.

Epsilon amino caproic acid inhibits streptokinase-plasminogen activator complex formation and substrate binding through kringle-dependent mechanisms

Affiliations

Epsilon amino caproic acid inhibits streptokinase-plasminogen activator complex formation and substrate binding through kringle-dependent mechanisms

L F Lin et al. Biochemistry. .

Abstract

Lysine side chains induce conformational changes in plasminogen (Pg) that regulate the process of fibrinolysis or blood clot dissolution. A lysine side-chain mimic, epsilon amino caproic acid (EACA), enhances the activation of Pg by urinary-type and tissue-type Pg activators but inhibits Pg activation induced by streptokinase (SK). Our studies of the mechanism of this inhibition revealed that EACA (IC(50) 10 microM) also potently blocked amidolytic activity by SK and Pg at doses nearly 10000-fold lower than that required to inhibit the amidolytic activity of plasmin. Different Pg fragments were used to assess the role of the kringles in mediating the inhibitory effects of EACA: mini-Pg which lacks kringles 1-4 of Glu-Pg and micro-Pg which lacks all kringles and contains only the catalytic domain. SK bound with similar affinities to Glu-Pg (K(A) = 2.3 x 10(9) M(-1)) and to mini-Pg (K(A) = 3.8 x 10(9) M(-)(1)) but with significantly lower affinity to micro-Pg (K(A) = 6 x 10(7) M(-)(1)). EACA potently inhibited the binding of Glu-Pg to SK (K(i) = 5.7 microM), but was less potent (K(i) = 81.1 microM) for inhibiting the binding of mini-Pg to SK and had no significant inhibitory effects on the binding of micro-Pg and SK. In assays simulating substrate binding, EACA also potently inhibited the binding of Glu-Pg to the SK-Glu-Pg activator complex, but had negligible effects on micro-Pg binding. Taken together, these studies indicate that EACA inhibits Pg activation by blocking activator complex formation and substrate binding, through a kringle-dependent mechanism. Thus, in addition to interactions between SK and the protease domain, interactions between SK and the kringle domain(s) play a key role in Pg activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources