Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;32(5):839-51.
doi: 10.1006/jmcc.2000.1128.

Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes

Affiliations

Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes

P A Doevendans et al. J Mol Cell Cardiol. 2000 May.

Abstract

Embryonic stem cells will cluster and differentiate into embryoid bodies, which can develop spontaneous rhythmic contractions. From these embryoid bodies, cardiomyocytes can be isolated based on density by a discontinuous Percoll gradient. These cardiomyocytes differentiate into ventricular myocytes, which is demonstrated by the expression of the ventricular specific isoform of the myosin light chain 2 gene. In this study the functional expression of ion channels was compared between fetal cardiomyocytes (in vivo) and stem cell derived cardiomyocytes (in vitro). Sodium and calcium currents together with transient potassium currents could be detected in early developmental stages (<day 14) both in vivo and in vitro. In the early stages, we found a limited number of cells expressing I(Kr)and virtual absence of I(Ks). The characteristics and distribution of currents are similar in both cell types. The current characteristics were identical for ventricular compared to atrial or undifferentiated stem cell derived cardiomyocytes, despite differences in expression of regulatory myosin light chain proteins. The myocyte differentiation was verified in a limited number of cardiomyocytes following the patch clamp procedure by immunocytochemistry.

PubMed Disclaimer

LinkOut - more resources