Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 28;275(17):12769-80.
doi: 10.1074/jbc.275.17.12769.

High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach

Affiliations
Free article

High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach

A Frolov et al. J Biol Chem. .
Free article

Abstract

Fluorescent sterols, dehydroergosterol and NBD-cholesterol, were used to examine high density lipoprotein-mediated cholesterol uptake and intracellular targeting in L-cell fibroblasts. The uptake, but not esterification or targeting to lipid droplets, of these sterols differed >100-fold, suggesting significant differences in uptake pathways. NBD-cholesterol uptake kinetics and lipoprotein specificity reflected high density lipoprotein-mediated sterol uptake via the scavenger receptor B1. Fluorescence energy transfer showed an average intermolecular distance of 26 A between the two fluorescent sterols in L-cells. Indirect immunofluorescence revealed that both fluorescent sterols localized to L-cell lipid droplets, the surface of which contained adipose differentiation-related protein. This lipid droplet-specific protein specifically bound NBD-cholesterol with high affinity (K(d) = 2 nM) at a single site. Thus, NBD-cholesterol and dehydroergosterol were useful fluorescent probes of sterol uptake and intracellular sterol targeting. NBD-cholesterol more selectively probed high density lipoprotein-mediated uptake and rapid intracellular targeting of sterol to lipid droplets. Targeting of sterol to lipid droplets was correlated with the presence of adipose differentiation related protein, a lipid droplet-specific protein shown for the first time to bind unesterified sterol with high affinity.

PubMed Disclaimer

Publication types

MeSH terms