Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics
- PMID: 10777733
- PMCID: PMC1300826
- DOI: 10.1016/S0006-3495(00)76781-6
Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics
Abstract
We test the validity of the mean-field approximation in Poisson-Nernst-Planck theory by contrasting its predictions with those of Brownian dynamics simulations in schematic cylindrical channels and in a realistic potassium channel. Equivalence of the two theories in bulk situations is demonstrated in a control study. In simple cylindrical channels, considerable differences are found between the two theories with regard to the concentration profiles in the channel and its conductance properties. These differences are at a maximum in narrow channels with a radius smaller than the Debye length and diminish with increasing radius. Convergence occurs when the channel radius is over 2 Debye lengths. These tests unequivocally demonstrate that the mean-field approximation in the Poisson-Nernst-Planck theory breaks down in narrow ion channels that have radii smaller than the Debye length.
Similar articles
-
Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics.Biophys J. 2000 May;78(5):2349-63. doi: 10.1016/S0006-3495(00)76780-4. Biophys J. 2000. PMID: 10777732 Free PMC article.
-
Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.Biophys J. 2003 Jun;84(6):3594-606. doi: 10.1016/S0006-3495(03)75091-7. Biophys J. 2003. PMID: 12770869 Free PMC article.
-
A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.Bull Math Biol. 2016 Aug;78(8):1703-26. doi: 10.1007/s11538-016-0196-7. Epub 2016 Aug 1. Bull Math Biol. 2016. PMID: 27480225
-
Brownian dynamics simulation of pH-effects on conductance through potassium channels.Gen Physiol Biophys. 1996 Oct;15(5):389-402. Gen Physiol Biophys. 1996. PMID: 9228520 Review.
-
Theoretical and computational models of biological ion channels.Q Rev Biophys. 2004 Feb;37(1):15-103. doi: 10.1017/s0033583504003968. Q Rev Biophys. 2004. PMID: 17390604 Review.
Cited by
-
Diffusion of Charged Species in Liquids.Sci Rep. 2016 Nov 4;6:35211. doi: 10.1038/srep35211. Sci Rep. 2016. PMID: 27811959 Free PMC article.
-
Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter.Biophys J. 2007 Jul 1;93(1):44-53. doi: 10.1529/biophysj.106.098954. Epub 2007 Apr 13. Biophys J. 2007. PMID: 17434934 Free PMC article.
-
A size-modified poisson-boltzmann ion channel model in a solvent of multiple ionic species: Application to voltage-dependent anion channel.J Comput Chem. 2020 Jan 30;41(3):218-230. doi: 10.1002/jcc.26091. Epub 2019 Nov 14. J Comput Chem. 2020. PMID: 31845398 Free PMC article.
-
Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.PLoS One. 2011;6(6):e21204. doi: 10.1371/journal.pone.0021204. Epub 2011 Jun 23. PLoS One. 2011. PMID: 21731672 Free PMC article.
-
Selecting ions by size in a calcium channel: the ryanodine receptor case study.Biophys J. 2014 Nov 18;107(10):2263-73. doi: 10.1016/j.bpj.2014.09.031. Biophys J. 2014. PMID: 25418295 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources