Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;6(4):1219-28.

Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia

Affiliations
  • PMID: 10778944

Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia

M Omura-Minamisawa et al. Clin Cancer Res. 2000 Apr.

Abstract

p16/p15 regulate the cell cycle pathway by inhibiting the cyclin Ds-CDK4/6 mediated phosphorylation of pRb. We reported previously that in T-cell acute lymphoblastic leukemia (T-ALL), p16 and p15 were frequently (approximately 70%) inactivated at the DNA level by deletion, mutation, or hypermethylation. Therefore, we hypothesize that inactivation of the cell cycle regulatory pathway may be essential in the pathogenesis of T-ALL, and that the remaining T-ALL with a wild-type p16/p15 gene likely harbor inactivation of these genes at RNA or protein levels. Alternatively, the downstream components of the pathway including CDK4/6, cyclin Ds, and pRb may be deregulated. In 124 primary T-ALLs, we found inactivation of the p16 and p15 genes at the DNA level in 79 (64%) and 64 (52%) samples, respectively. Only 9 of the 45 samples with wild-type p16 expressed p16 protein, whereas the remaining 36 lacked p16 expression at the RNA or protein level. In the 60 samples with an intact p15 gene, only 2 expressed p15 mRNA, and the only one analyzed lacked p15 protein. Overall, the abrogation rates for p16 and p15 at DNA/RNA/protein levels were 93% (115 of 124) and 99% (123 of 124), respectively. Although no alterations were evident in cyclin Ds or CDK4/6, pRb was hyperphosphorylated in the majority of samples investigated. These findings strongly support that both p16 and p15 are specific targets in the deregulation of the cell cycle pathway in T-ALL and that the inactivation of these genes is most likely essential in the pathogenesis of this disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms