Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;20(4):726-35.
doi: 10.1097/00004647-200004000-00010.

Temporal changes of the apparent diffusion coefficients of water and metabolites in rats with hemispheric infarction: experimental study of transhemispheric diaschisis in the contralateral hemisphere at 7 tesla

Affiliations

Temporal changes of the apparent diffusion coefficients of water and metabolites in rats with hemispheric infarction: experimental study of transhemispheric diaschisis in the contralateral hemisphere at 7 tesla

O Abe et al. J Cereb Blood Flow Metab. 2000 Apr.

Abstract

The purpose of the present study was to clarify the temporal changes of the apparent diffusion coefficients (ADCs) of cerebral metabolites during early focal ischemia using stimulated echo acquisition mode with short echo time at a 7 T magnet to assess the pathophysiology of the reduction in diffusion properties observed both in the ischemic cerebral hemisphere and in the contralateral hemisphere. The ADCs of metabolites in the infarcted hemisphere 1 hour and 3 hours after the onset of ischemia decreased with 25% and 29% for choline containing compounds (Cho), 16% and 26% for creatine and phosphocreatine (Cre), and 19% and 19% for N-acetylaspartate (NAA), respectively, compared with the ADC values 2 hours later in the contralateral hemisphere. There were decreases in the ADC of Cho, Cre, and NAA with 21%, 7%, and 18% 8 hours later, respectively, in the noninfarcted hemisphere, which suggested transhemispheric diaschisis in rats with focal cerebral ischemia. The present study proposed that the diffusion characteristics of the brain metabolites might offer new insights into circulatory and metabolic alteration in the cerebral intracellular circumstance.

PubMed Disclaimer

LinkOut - more resources