Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;135(4):309-15.
doi: 10.1067/mlc.2000.105616.

Reactive oxygen species enhances endothelin-1 production of diabetic rat glomeruli in vitro and in vivo

Affiliations

Reactive oxygen species enhances endothelin-1 production of diabetic rat glomeruli in vitro and in vivo

H C Chen et al. J Lab Clin Med. 2000 Apr.

Abstract

Both reactive oxygen species (ROS) and endothelin-1 (ET- 1) have been implicated in the pathophysiology of diabetic nephropathy. The interrelationship between them, however, has not been documented in this disease. To determine whether ROS regulates ET-1 production in diabetic kidneys, we examined the in vitro and in vivo effects of ROS donors and scavengers on ET-1 production of diabetic rat glomeruli. For in vitro study, the glomeruli were isolated with a sieving method from streptozotocin-induced diabetic rats and killed at 1 week, 1 month, and 3 months, respectively. Superoxide was measured by a spectrophotometer, and ET-1 was measured by radioimmunoassay. The results demonstrated that the basal production levels of superoxide and ET-1 were higher in diabetic glomeruli than in normal glomeruli in vitro. There was a positive correlation between the production of superoxide and ET-1 in diabetic glomeruli. The basal ET-1 production was markedly attenuated by ROS scavengers including superoxide dismutase, catalase, dimethyl sulfoxide, and deferoxamine in diabetic glomeruli. Exogenous ROS generated by xanthine/xanthine oxidase significantly enhanced ET-1 generation by both diabetic and normal glomeruli. A high glucose concentration (500 mg/dL) in vitro increased ET-1 production by normal glomeruli but not diabetic glomeruli, and insulin partly suppressed ET- 1 production by diabetic glomeruli. The in vivo study demonstrated that when diabetic rats were injected daily with superoxide dismutase or catalase after diabetes was induced, the basal production of ET-1 was markedly attenuated after 1 week and 1 month, respectively. These results indicate that exogenously or endogenously derived ROS can enhance ET-1 production by diabetic rat glomeruli and that ROS scavengers suppress ET- 1 production both in vitro and in vivo. The effects of ROS on ET-1 production of diabetic glomeruli may be partly caused by the effect of hyperglycemia or insulin deficiency.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources