Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 May 1;186(1):1-9.
doi: 10.1111/j.1574-6968.2000.tb09074.x.

The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences

Affiliations
Review

The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences

D J Studholme et al. FEMS Microbiol Lett. .

Abstract

The bacterial transcription factor sigma(N) (sigma-N, sigma-54, RpoN) confers upon RNA polymerase (RNAP) properties distinct from those of the major house-keeping form of RNAP, which contains sigma(70) (sigma-70, RpoD). Transcription by RNAP containing sigma(N) is subject to enhancer-dependent regulation. Far from being an 'oddity' or 'exception to the rule', the occurrence of sigma(N) in the genome sequences of such diverse bacteria as Aquifex aeolicus, Bacillus subtilis, Chlamydia spp. and Borrelia burgdorferi argues for its biological importance. The availability of complete genome sequences of several (eu)bacteria offers an opportunity to extend our understanding of this special form of transcriptional regulation. By scanning their genome sequences, new functions have been predicted for enhancer-dependent transcription in A. aeolicus, Chlamydia trachomatis, Escherichia coli, Treponema pallidum and B. burgdorferi.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources