Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 7;275(27):20450-7.
doi: 10.1074/jbc.M001989200.

Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4, 5-trisphosphate receptor in lobster olfactory receptor neurons

Affiliations
Free article

Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4, 5-trisphosphate receptor in lobster olfactory receptor neurons

S D Munger et al. J Biol Chem. .
Free article

Abstract

The role of phosphoinositide signaling in olfactory transduction is still being resolved. Compelling functional evidence for the transduction of odor signals via phosphoinositide pathways in olfactory transduction comes from invertebrate olfactory systems, in particular lobster olfactory receptor neurons. We now provide molecular evidence for two components of the phosphoinositide signaling pathway in lobster olfactory receptor neurons, a G protein alpha subunit of the G(q) family and an inositol 1,4, 5-trisphosphate-gated channel or an inositol 1,4,5-trisphosphate (IP(3)) receptor. Both proteins localize to the site of olfactory transduction, the outer dendrite of the olfactory receptor neurons. Furthermore, the IP(3) receptor localizes to membranes in the ciliary transduction compartment of these cells at both the light microscopic and electron microscopic levels. Given the absence of intracellular organelles in the sub-micron diameter olfactory cilia, this finding indicates that the IP(3) receptor is associated with the plasma membrane and provides the first definitive evidence for plasma membrane localization of an IP(3)R in neurons. The association of the IP(3) receptor with the plasma membrane may be a novel mechanism for regulating intracellular cations in restricted cellular compartments of neurons.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources