Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;93(1-2):83-93.
doi: 10.1016/s0925-4773(00)00267-7.

Distinct role of protein phosphatase 2A subunit Calpha in the regulation of E-cadherin and beta-catenin during development

Affiliations
Free article

Distinct role of protein phosphatase 2A subunit Calpha in the regulation of E-cadherin and beta-catenin during development

J Götz et al. Mech Dev. 2000 May.
Free article

Abstract

Protein phosphatase 2A (PP2A) plays central roles in development, cell growth and transformation. Inactivation of the gene encoding the PP2A catalytic subunit Calpha by gene targeting generates a lethal embryonic phenotype. No mesoderm is formed in Calpha(-/-) embryos. Here, we found that during normal early embryonic development Calpha was predominantly present at the plasma membrane whereas the highly homologous isoform Cbeta was localized to the cytoplasm and nuclei, suggesting the inability of Cbeta to compensate for vital functions of Calpha in Calpha(-/-) embryos. In addition, PP2A was found in a complex containing the PP2A substrates E-cadherin and beta-catenin. In Calpha(-/-) embryos, E-cadherin and beta-catenin were redistributed from the plasma membrane to the cytosol. Cytosolic concentrations of beta-catenin were low. Our results suggest that Calpha is required for stabilization of E-cadherin/beta-catenin complexes at the plasma membrane.

PubMed Disclaimer

Publication types

LinkOut - more resources