Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 5;275(18):13415-9.
doi: 10.1074/jbc.275.18.13415.

Na+ binding of V-type Na+-ATPase in Enterococcus hirae

Affiliations
Free article

Na+ binding of V-type Na+-ATPase in Enterococcus hirae

T Murata et al. J Biol Chem. .
Free article

Erratum in

  • J Biol Chem 2000 Jul 14;275(28):21780

Abstract

Rotation catalysis theory has been successfully applied to the molecular mechanism of the ATP synthase (F(0)F(1)-ATPase) and probably of the vacuolar ATPase. We investigated the ion binding step to Enterococcus hirae Na(+)-translocating V-ATPase. The kinetics of Na(+) binding to purified V-ATPase suggested 6 +/- 1 Na(+) bound/enzyme molecule, with a single high affinity (K(d(Na(+()))) = 15 +/- 5 micrometer). The number of cation binding sites is consistent with the model that V-ATPase proteolipids form a rotor ring consisting of hexamers, each having one cation binding site. Release of the bound (22)Na(+) from purified molecules in a chasing experiment showed two phases: a fast component (about two-thirds of the total amount of bound Na(+); k(exchange) > 1.7 min(-1)) and a slow component (about one-third of the total; k(exchange) = 0.16 min(-1)), which changes to the fast component by adding ATP or ATPgammaS. This suggested that about two-thirds of the Na(+) binding sites of the Na(+)-ATPase are readily accessible from the aqueous phase and that the slow component is important for the transport reaction.

PubMed Disclaimer

Publication types

LinkOut - more resources