Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;155(1):291-300.
doi: 10.1093/genetics/155.1.291.

Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus

Affiliations

Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus

J H Hallsson et al. Genetics. 2000 May.

Abstract

Mouse microphthalmia transcription factor (Mitf) mutations affect the development of four cell types: melanocytes, mast cells, osteoclasts, and pigmented epithelial cells of the eye. The mutations are phenotypically diverse and can be arranged in an allelic series. In humans, MITF mutations cause Waardenburg syndrome type 2A (WS2A) and Tietz syndrome, autosomal dominant disorders resulting in deafness and hypopigmentation. Mitf mice thus represent an important model system for the study of human disease. Here we report the complete exon/intron structure of the mouse Mitf gene and show it to be similar to the human gene. We also found that the mouse gene is transcriptionally complex and is capable of generating at least 13 different Mitf isoforms. Some of these isoforms are missing important functional domains of the protein, suggesting that they might play an inhibitory role in Mitf function and signal transduction. In addition, we determined the molecular basis for six microphthalmia mutations. Two of the mutations are reported for the first time here (Mitf(mi-enu198) and Mitf(mi-x39)), while the others (Mitf(mi-ws), Mitf(mi-bws), Mitf(mi-ew), and Mitf(mi-di)) have been described but the molecular basis for the mutation not determined. When analyzed in terms of the genomic and transcriptional data presented here, it is apparent that these mutations result from RNA processing or transcriptional defects. Interestingly, three of the mutations (Mitf(mi-x39), Mitf(mi-bws), and Mitf(mi-ws)) produce proteins that are missing important functional domains of the protein identified in in vitro studies, further confirming a biological role for these domains in the whole animal.

PubMed Disclaimer

References

    1. J Hered. 1996 Jul-Aug;87(4):334-8 - PubMed
    1. Nucleic Acids Res. 1996 Jun 1;24(11):2017-21 - PubMed
    1. EMBO J. 1996 Nov 15;15(22):6280-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5172-6 - PubMed
    1. Am J Hum Genet. 1997 Jun;60(6):1389-98 - PubMed

Publication types

Substances

Associated data