Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 May;88(5):1715-20.
doi: 10.1152/jappl.2000.88.5.1715.

Ventilatory and metabolic adaptations to walking and cycling in patients with COPD

Affiliations
Free article
Comparative Study

Ventilatory and metabolic adaptations to walking and cycling in patients with COPD

P Palange et al. J Appl Physiol (1985). 2000 May.
Free article

Abstract

To test the hypothesis that in chronic obstructive pulmonary disease (COPD) patients the ventilatory and metabolic requirements during cycling and walking exercise are different, paralleling the level of breathlessness, we studied nine patients with moderate to severe, stable COPD. Each subject underwent two exercise protocols: a 1-min incremental cycle ergometer exercise (C) and a "shuttle" walking test (W). Oxygen uptake (VO(2)), CO(2) output (VCO(2)), minute ventilation (VE), and heart rate (HR) were measured with a portable telemetric system. Venous blood lactates were monitored. Measurements of arterial blood gases and pH were obtained in seven patients. Physiological dead space-tidal volume ratio (VD/VT) was computed. At peak exercise, W vs. C VO(2), VE, and HR values were similar, whereas VCO(2) (848 +/- 69 vs. 1,225 +/- 45 ml/min; P < 0. 001) and lactate (1.5 +/- 0.2 vs. 4.1 +/- 0.2 meq/l; P < 0.001) were lower, DeltaVE/DeltaVCO(2) (35.7 +/- 1.7 vs. 25.9 +/- 1.3; P < 0. 001) and DeltaHR/DeltaVO(2) values (51 +/- 3 vs. 40 +/- 4; P < 0.05) were significantly higher. Analyses of arterial blood gases at peak exercise revealed higher VD/VT and lower arterial partial pressure of oxygen values for W compared with C. In COPD, reduced walking capacity is associated with an excessively high ventilatory demand. Decreased pulmonary gas exchange efficiency and arterial hypoxemia are likely to be responsible for the observed findings.

PubMed Disclaimer

Publication types

LinkOut - more resources