On the simulation of large populations of neurons
- PMID: 10798499
- DOI: 10.1023/a:1008964915724
On the simulation of large populations of neurons
Abstract
The dynamics of large populations of interacting neurons is investigated. Redundancy present in subpopulations of cortical networks is exploited through the introduction of a probabilistic description. A derivation of the kinetic equations for such subpopulations, under general transmembrane dynamics, is presented. The particular case of integrate-and-fire membrane dynamics is considered in detail. A variety of direct simulations of neuronal populations, under varying conditions and with as many as O(10(5)) neurons, is reported. Comparison is made with analogous kinetic equations under the same conditions. Excellent agreement, down to fine detail, is obtained. It is emphasized that no free parameters enter in the comparisons that are made.
Similar articles
-
Event-driven simulations of nonlinear integrate-and-fire neurons.Neural Comput. 2007 Dec;19(12):3226-38. doi: 10.1162/neco.2007.19.12.3226. Neural Comput. 2007. PMID: 17970651
-
Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.Neural Comput. 2004 Oct;16(10):2125-95. doi: 10.1162/0899766041732413. Neural Comput. 2004. PMID: 15333210
-
Simplicity and efficiency of integrate-and-fire neuron models.Neural Comput. 2009 Feb;21(2):353-9. doi: 10.1162/neco.2008.03-08-731. Neural Comput. 2009. PMID: 19431263
-
On numerical simulations of integrate-and-fire neural networks.Neural Comput. 1998 Feb 15;10(2):467-83. doi: 10.1162/089976698300017845. Neural Comput. 1998. PMID: 9472491 Review.
-
A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.Biol Cybern. 2006 Jul;95(1):1-19. doi: 10.1007/s00422-006-0068-6. Epub 2006 Apr 19. Biol Cybern. 2006. PMID: 16622699 Review.
Cited by
-
Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission.J Comput Neurosci. 2005 Oct;19(2):147-80. doi: 10.1007/s10827-005-1084-6. J Comput Neurosci. 2005. PMID: 16133817
-
Exact mean-field models for spiking neural networks with adaptation.J Comput Neurosci. 2022 Nov;50(4):445-469. doi: 10.1007/s10827-022-00825-9. Epub 2022 Jul 14. J Comput Neurosci. 2022. PMID: 35834100
-
The faithful copy neuron.J Comput Neurosci. 2012 Jun;32(3):377-85. doi: 10.1007/s10827-011-0356-6. Epub 2012 Jan 11. J Comput Neurosci. 2012. PMID: 22234837
-
A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons.Front Comput Neurosci. 2013 Jan 4;6:100. doi: 10.3389/fncom.2012.00100. eCollection 2012. Front Comput Neurosci. 2013. PMID: 23316157 Free PMC article.
-
A numerical population density technique for N-dimensional neuron models.Front Neuroinform. 2022 Jul 22;16:883796. doi: 10.3389/fninf.2022.883796. eCollection 2022. Front Neuroinform. 2022. PMID: 35935536 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources