Aldosterone-induced moulting in amphibian skin and its effect on electrical capacitance
- PMID: 1079877
- DOI: 10.1007/BF01868169
Aldosterone-induced moulting in amphibian skin and its effect on electrical capacitance
Abstract
The resistance and capacitance of the isolated amphibian skin have been determined from measurements of the response of the voltage across the skin to small steps to current. Previous work indicates that the electrical impedance of frog skin, when the skin is bathed with Ringer's solution on both sides, is largely determined by the properties of the functional outward-facing membrane of the skin, the outer membrane of the stratum granulosum (P.G. Smith, 1971, Acta Physiol. Scand. 81:355). This membrane can be represented by a resistance and capacitance in parallel. Aldosterone, which induces conversion of the s. granulosum into a cornified cell layer and transformation of the cell layer below into a new s. granulosum, also causes a transient rise in resistance and a short-lived decrease in capacitance to about one-half its initial value. It is suggested that these electrical changes are caused by the transitory presence of two functional outward-facing membranes in series. The method of determining resistance and capacitance from the voltage response is discussed in the Appendix.
Similar articles
-
Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J Physiol. 1977 May;267(1):137-66. doi: 10.1113/jphysiol.1977.sp011805. J Physiol. 1977. PMID: 301566 Free PMC article.
-
The action of antidiuretic hormone on cell membranes. Voltage transient studies.Br J Pharmacol. 1969 Jan;35(1):29-50. doi: 10.1111/j.1476-5381.1969.tb07965.x. Br J Pharmacol. 1969. PMID: 5762042 Free PMC article.
-
Membrane capacitance in frog cut twitch fibers mounted in a double vaseline-gap chamber.J Gen Physiol. 1990 Aug;96(2):225-56. doi: 10.1085/jgp.96.2.225. J Gen Physiol. 1990. PMID: 2212982 Free PMC article.
-
Dose dependence of glutaraldehyde-induced changes in the electrical properties of the amphibian skin.Arch Int Physiol Biochim Biophys. 1991 Feb;99(1):83-8. doi: 10.3109/13813459109145908. Arch Int Physiol Biochim Biophys. 1991. PMID: 1713491
-
Ionic channels in epithelial cell membranes.Physiol Rev. 1985 Oct;65(4):833-903. doi: 10.1152/physrev.1985.65.4.833. Physiol Rev. 1985. PMID: 2414790 Review.
Cited by
-
Impedance analysis of a tight epithelium using a distributed resistance model.Biophys J. 1979 May;26(2):291-317. doi: 10.1016/S0006-3495(79)85250-9. Biophys J. 1979. PMID: 262419 Free PMC article.
-
First line of defence: the role of sloughing in the regulation of cutaneous microbes in frogs.Conserv Physiol. 2014 Apr 21;2(1):cou012. doi: 10.1093/conphys/cou012. eCollection 2014. Conserv Physiol. 2014. PMID: 27293633 Free PMC article.
-
Moulting in Rana esculenta: development of mitochondria-rich cells, morphological changes of the epithelium and sodium transport.Cell Tissue Res. 1979 Mar 9;197(1):23-38. doi: 10.1007/BF00233551. Cell Tissue Res. 1979. PMID: 313252
-
Cell-Electrode Models for Impedance Analysis of Epithelial and Endothelial Monolayers Cultured on Microelectrodes.Sensors (Basel). 2024 Jun 28;24(13):4214. doi: 10.3390/s24134214. Sensors (Basel). 2024. PMID: 39000992 Free PMC article.
-
Na+ transport by rabbit urinary bladder, a tight epithelium.J Membr Biol. 1976 Aug 27;28(1):1-40. doi: 10.1007/BF01869689. J Membr Biol. 1976. PMID: 9512