Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 17;862(1-2):103-10.
doi: 10.1016/s0006-8993(00)02077-1.

The pain inhibiting pain effect: an electrophysiological study in humans

Affiliations

The pain inhibiting pain effect: an electrophysiological study in humans

A Reinert et al. Brain Res. .

Abstract

This study examines the counterirritation phenomenon of experimental pain in human subjects. Phasic pain induced by intracutaneous electrical stimuli was simultaneously applied with tonic pain induced by ischemic muscle work. Pain ratings, spontaneous EEG and evoked potentials were measured. We found a significant reduction of phasic pain ratings during and 10 min after tonic pain. The late somatosensory evoked potentials as neurophysiological correlates of phasic pain sensation were attenuated until 20 min after tonic pain offset. The extent of phasic pain relief due to concomitant tonic pain was small but significant, comparable to the effect of a regular systemic dose of a narco-analgesic drug in this experimental pain model. On the other hand, no modulations in the late components of the auditory evoked potential and the power spectrum of the spontaneous EEG were observed. These variables reflect the attention and vigilance of the subject and are well-known to be affected by opioids. The only exception was an increase of beta power, which might reflect hyperarousal during tonic pain. These results support the suggestion, that the analgesic effect of heterotopic noxious stimulation in humans is based on the activation of a specific inhibitory pain control system. Systemic release of endogenous opioids is unlikely to be involved, because the typical effects of opioids on the EEG were not observed.

PubMed Disclaimer

LinkOut - more resources