Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 May;39(3):207-29.
doi: 10.1016/s0163-7827(00)00007-2.

Sphingomyelin metabolites in vascular cell signaling and atherogenesis

Affiliations
Review

Sphingomyelin metabolites in vascular cell signaling and atherogenesis

N Augé et al. Prog Lipid Res. 2000 May.

Abstract

The atherosclerotic lesion most probably develops through a number of cellular events which implicate all vascular cell types and include synthesis of extracellular proteins, cell proliferation, differentiation and death. Sphingolipids and sphingolipid metabolizing enzymes may play important roles in atherogenesis, not only because of lipoprotein alterations but also by mediating a number of cellular events which are believed to be crucial in the development of the vascular lesions such as proliferation or cell death. Exogenous sphingolipids may mediate various biological effects such as apoptosis, mitogenesis or differentiation depending on the cell type. Moreover, several molecules present in the atherogenic lesion, such as oxidized LDL, growth factors or cytokines, which activate intracellular signaling pathways leading to vascular cell modifications, can stimulate sphingomyelin hydrolysis and generation of ceramide (and other metabolites as sphingosine-1-phosphate). Here we review the potential implication of the sphingomyelin/ceramide cycle in vascular cell signaling related to atherosclerosis, and more generally the role of sphingolipids in the events observed during the atherosclerotic process as cell differentiation, migration, adhesion, retraction, proliferation and death.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources