Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;74(5):1903-12.
doi: 10.1046/j.1471-4159.2000.0741903.x.

High extracellular potassium modulates nitric oxide synthase expression in human astrocytes

Affiliations

High extracellular potassium modulates nitric oxide synthase expression in human astrocytes

A C Morgan et al. J Neurochem. 2000 May.

Abstract

Inducible nitric oxide synthase (iNOS) is a molecule of great interest, given the numerous biological activities of nitric oxide and the documented expression of iNOS in several CNS pathologies. There also appears to be species-dependent regulation of iNOS expression as well as CNS-specific regulation. In this study, we have examined cultures of cytokine-activated primary human astrocytes as a model system with which to study the mechanisms of iNOS regulation in human CNS. As one of the major functions of astrocytes is spatial buffering of K+ ion, we examined the effect of high extracellular KCI on astrocyte iNOS expression. The results demonstrate that KCI at 25-75 mM potently inhibits astrocyte nitrite production stimulated by interleukin-1 (IL-1)/interferon-gamma (IFNgamma). In addition, several potassium channel inhibitors such as CsCl, tetraethylammonium, and 4-aminopyridine as well as nigericin inhibited astrocyte iNOS expression induced by IL-1/IFNgamma. These results demonstrate a novel role for astrocyte potassium channel activity in modulation of astrocyte function. They further suggest neural-specific mechanisms for glial iNOS regulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources