Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 12;864(2):220-9.
doi: 10.1016/s0006-8993(00)02180-6.

Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I

Affiliations

Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I

Y B Lee et al. Brain Res. .

Abstract

In higher vertebrates, reactive gliosis resulting from injury to the central nervous system (CNS) is characterized by a rapid increase in immunoreactivity (IR) to glial fibrillary acidic protein (GFAP). Little is known about the extracellular signals that initiate the increase in GFAP-IR following CNS injury. We demonstrated recently [T.H. Oh, G.J. Markelonis, J.R. Von Visger, B. Baik, M.T. Shipley, Acidic pH rapidly increases immunoreactivity of glial fibrillary acidic protein in cultured astrocytes, Glia 13 (1995) 319-322] that a rapid increase in GFAP-IR can be evoked in mature astrocyte cultures by exposing the cells to an acidic medium. We investigated the intracellular pathway(s) involved in initiating increased GFAP-IR, a hallmark of reactive astrocytes. The increase in GFAP-IR produced by exposure to acidic medium was blocked by pretreatment with nickel ions, by such blockers of L-type calcium channels as nifedipine, verapamil and diltiazem, by calpain inhibitor I, or by the intracellular calcium chelator, BAPTA-AM. At physiological pH, treatment with the calcium ionophore, A23187, resulted in increased GFAP-IR which could be blocked by pretreatment with calpain inhibitor I. Astrocytes exposed to low pH exhibited a marked increase in a GFAP fragment with a molecular weight of 48 kDa. In astrocytes exposed to acidic medium, alpha-fodrin, a selective endogenous substrate of calpain, was also found to be hydrolyzed producing fragments with molecular weights of 120-150 kDa. As anticipated, pretreatment with calpain inhibitor I prevented the proteolytic degradation of both GFAP and alpha-fodrin in these samples. These results suggest that the initial increase in GFAP-IR after CNS injury appears to be linked to Ca(++) influx, and is mediated further by a proteolytic process that seemingly involves the activation of the calcium-dependent protease, calpain I.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources