Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 4;473(1):58-62.
doi: 10.1016/s0014-5793(00)01498-8.

Detection of superoxide anion using an isotopically labeled nitrone spin trap: potential biological applications

Affiliations
Free article

Detection of superoxide anion using an isotopically labeled nitrone spin trap: potential biological applications

H Zhang et al. FEBS Lett. .
Free article

Abstract

We describe the synthesis and biological applications of a novel nitrogen-15-labeled nitrone spin trap, 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide ([(15)N]EMPO) for detecting superoxide anion. Superoxide anion generated in xanthine/xanthine oxidase (100 nM min(-1)) and NADPH/calcium-calmodulin/nitric oxide synthase systems was readily detected using EMPO, a nitrone analog of 5,5'-dimethyl-1-pyrroline N-oxide (DMPO). Unlike DMPO-superoxide adduct (DMPO-OOH), the superoxide adduct of EMPO (EMPO-OOH) does not spontaneously decay to the corresponding hydroxyl adduct, making spectral interpretation less confounding. Although the superoxide adduct of 5-(diethoxyphosphoryl)-5-methyl-pyrroline N-oxide is more persistent than EMPO-OOH, the electron spin resonance spectra of [(14)N]EMPO-OOH and [(15)N]EMPO-OOH are less complex and easier to interpret. Potential uses of [(15)N]EMPO in elucidating the mechanism of superoxide formation from nitric oxide synthases, and in ischemia/reperfusion injury are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources