Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;83(5):2580-601.
doi: 10.1152/jn.2000.83.5.2580.

Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP

Affiliations
Free article

Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP

A Murata et al. J Neurophysiol. 2000 May.
Free article

Abstract

In this study, we mainly investigated the visual selectivity of hand-manipulation-related neurons in the anterior intraparietal area (area AIP) while the animal was grasping or fixating on three-dimensional (3D) objects of different geometric shapes, sizes, and orientations. We studied the activity of 132 task-related neurons during the hand-manipulation tasks in the light and in the dark, as well as during object fixation. Seventy-seven percent (101/132) of the hand-manipulation-related neurons were visually responsive, showing either lesser activity during manipulation in the dark than during that in the light (visual-motor neurons) or no activation in the dark (visual-dominant neurons). Of these visually responsive neurons, more than half (n = 66) responded during the object-fixation task (object-type). Among these, 55 were tested for their shape selectivity during the object-fixation task, and many (n = 25) were highly selective, preferring one particular shape of the six different shapes presented (ring, cube, cylinder, cone, sphere, and square plate). For 28 moderately selective object-type neurons, we performed multidimensional scaling (MDS) to examine how the neurons encode the similarity of objects. The results suggest that some moderately selective neurons responded preferentially to common geometric features shared by similar objects (flat, round, elongated, etc.). Moderately selective nonobject-type visually responsive neurons, which did not respond during object fixation, were found by MDS to be more closely related to the handgrip than to the object shape. We found a similar selectivity for handgrip in motor-dominant neurons that did not show any visual response. With regard to the size of the objects, 16 of 26 object-type neurons tested were selective for both size and shape, whereas 9 object-type neurons were selective for shape but not for size. Seven of 12 nonobject-type and all (8/8) of the motor-dominant neurons examined were selective for size, and almost all of them were also selective for objects. Many hand-manipulation-related neurons that preferred the plate and/or ring were selective for the orientation of the objects (17/20). These results suggest that the visual responses of object-type neurons represent the shape, size, and/or orientation of 3D objects, whereas those of the nonobject-type neurons probably represent the shape of the handgrip, grip size, or hand-orientation. The activity of motor-dominant neurons was also, in part, likely to represent these parameters of hand movement. This suggests that the dorsal visual pathway is concerned with the aspect of form, orientation, and/or size perception that is relevant for the visual control of movements.

PubMed Disclaimer

Publication types

LinkOut - more resources