Marrow toxicity of 33P-versus 32P-orthophosphate: implications for therapy of bone pain and bone metastases
- PMID: 10809212
Marrow toxicity of 33P-versus 32P-orthophosphate: implications for therapy of bone pain and bone metastases
Abstract
Several bone-seeking radiopharmaceuticals, such as 32P-orthophosphate, 89Sr-chloride, 186Re-1,1 hydroxyethylidene diphosphonate (HEDP), and 153Sm-ethylene diamine tetramethylene phosphonic acid (EDTMP), have been used to treat bone pain. The major limiting factor with this modality is bone marrow toxicity, which arises from the penetrating nature of the high-energy beta particles emitted by the radionuclides. It has been hypothesized that marrow toxicity can be reduced while maintaining therapeutic efficacy by using radionuclides that emit short-range beta particles or conversion electrons. In view of the significant clinical experience with 32P-orthophosphate, and the similarity in pain relief afforded by 32P-orthophosphate and 89Sr-chloride, this hypothesis is examined in this study using 32P- and 33P-orthophosphate in a mouse femur model.
Methods: Survival of granulocyte macrophage colony-forming cells (GM-CFCs) in femoral marrow was used as a biologic dosimeter for bone marrow. 32P- and 33P-orthophosphate were administered intravenously, and GM-CFC survival was determined as a function of time after injection and, at the nadir, as a function of injected activity. The kinetics of radioactivity in the marrow, muscle, and femoral bone were also determined. The biologic dosimeter was calibrated by assessing GM-CFC survival at its nadir after chronic irradiation of Swiss Webster mice with exponentially decreasing dose rates of gamma rays (relative biologic effectiveness equivalent to that of beta particles) from a low-dose rate 137Cs irradiator. Dose-rate decrease half-times (Td) (time required for 137Cs gamma ray dose rate to decrease by one half) of 62, 255, and 425 h and infinity were used to simulate the dose rate patterns delivered by the radiopharmaceuticals as dictated by their effective clearance half-times from the mouse femurs. These data were used to experimentally determine the mean absorbed dose to the femoral marrow per unit injected activity. Finally, a theoretical dosimetry model of the mouse femur was developed, and the absorbed doses to the femoral marrow, bone, and endosteum were calculated using the EGS4 Monte Carlo code.
Results: When the animals were irradiated with exponentially decreasing dose rates of 137Cs gamma rays, initial dose rates required to achieve 37% survival were 1.9, 0.98, 0.88, and 0.79 cGy/h for dose rate decrease half-times of 62, 255, and 425 h and infinity, respectively. The D37 values were 144 +/- 15, 132 +/- 12, 129 +/- 3, and 133 +/- 10 cGy, respectively, compared with a value of 103 cGy for acute irradiation. When 32P and 33P were administered, the injected activities required to achieve 37% survival were 313 and 2,820 kBq, respectively. Theoretical dosimetry calculations show that 33P offers a 3- to 6-fold therapeutic advantage over 32P, depending on the source and target regions assumed.
Conclusion: The low-energy beta-particle emitter 33P appears to offer a substantial dosimetric advantage over energetic beta-particle emitters (e.g., 32p, 89Sr, 186Re) for irradiating bone and minimizing marrow toxicity. This suggests that low-energy beta or conversion electron emitters may offer a substantial advantage for alleviation of bone pain as well as for specifically irradiating metastatic disease in bone.
Similar articles
-
Marrow-sparing effects of 117mSn(4+)diethylenetriaminepentaacetic acid for radionuclide therapy of bone cancer.J Nucl Med. 2000 Dec;41(12):2043-50. J Nucl Med. 2000. PMID: 11138691
-
Biologic dosimetry of bone marrow: induction of micronuclei in reticulocytes after exposure to 32P and 90Y.J Nucl Med. 2001 Jan;42(1):162-9. J Nucl Med. 2001. PMID: 11197968
-
Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions.J Nucl Med. 2000 Apr;41(4):682-7. J Nucl Med. 2000. PMID: 10768569
-
Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation.Int J Radiat Biol. 2003 Jan;79(1):1-13. Int J Radiat Biol. 2003. PMID: 12556326 Review.
-
Internal radiotherapy of painful bone metastases.Methods. 2011 Nov;55(3):258-70. doi: 10.1016/j.ymeth.2011.07.001. Epub 2011 Jul 22. Methods. 2011. PMID: 21803158 Review.
Cited by
-
Synthesis and Ready to Use Kit Formulation of EDTMP for the Preparation of 177Lu-EDTMP as a Bone Palliation Radiopharmaceutical.Curr Radiopharm. 2023;16(1):38-43. doi: 10.2174/1874471015666220721095938. Curr Radiopharm. 2023. PMID: 35899954 Free PMC article.
-
MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy.J Nucl Med. 2010 Feb;51(2):311-28. doi: 10.2967/jnumed.108.058651. Epub 2010 Jan 15. J Nucl Med. 2010. PMID: 20080889 Free PMC article.
-
The management of painful bone metastases with an emphasis on radionuclide therapy.J Natl Med Assoc. 2007 Jul;99(7):785-94. J Natl Med Assoc. 2007. PMID: 17668645 Free PMC article. Review.
-
Hemopoietic response to low dose-rates of ionizing radiation shows stem cell tolerance and adaptation.Dose Response. 2012 Dec;10(4):644-63. doi: 10.2203/dose-response.12-014.Feinendegen. Epub 2012 Oct 9. Dose Response. 2012. PMID: 23304110 Free PMC article.
-
Radionuclide Therapy of Bone Metastases.Breast Care (Basel). 2012 Apr;7(2):100-107. doi: 10.1159/000337634. Epub 2012 Apr 24. Breast Care (Basel). 2012. PMID: 22740795 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources