Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Apr;15(2):619-27.
doi: 10.14670/HH-15.619.

Pathophysiology of primary hyperparathyroidism

Affiliations
Review

Pathophysiology of primary hyperparathyroidism

P Hellman et al. Histol Histopathol. 2000 Apr.

Abstract

Parathyroid gland is the overall regulatory organ within the systemic calcium homeostasis. Through cell surface bound calcium-sensing receptors external calcium inversely regulates release of parathyroid hormone (PTH). This mechanism, which is voltage independent and most sensitive around physiologic calcium concentrations, is regulated through a 120 kDa calcium sensing receptor, CaR. Inherited inactivation of this receptor is the cause for familial hypocalciuric hypercalcemia (FHH). Parallel research identified the 550 kDa glycoprotein megalin, which also is expressed on the parathyroid cell surface, as another potential calcium sensing protein. Although this protein expresses numerous calcium binding sites on its external domain, its main function may be calcium sensitive binding and uptake of steroid hormones, such as 25-OH-vitamin D3 (bound to vitamin D binding protein) and retinol. In hyperparathyroidism (HPT), excessive PTH is secreted and the calcium sensitivity of the cells reduced, i.e. the set-point, defined as the external calcium concentration at which half-maximal inhibition of PTH release occurs, shifted to the right. Pathological cells have reduced expression of both CaR and megalin, and reduced amount of intracellular lipids, possibly including stored steroid hormones. A number of possible genetic disturbances have been identified, indicating multifactorial reasons for the disease. In postmenopausal women, however, the individual group with highest incidence of disease, a causal relation to reduced effect of vitamin D is possible. An incipient renal insufficiency with age, lack of sunshine in the Northern Hemisphere, and an association to the baT haplotype of the vitamin D receptor supports this theory. This review summarizes data on regulation of PTH release, dysregulation in HPT, as well as proliferation of parathyroid cells.

PubMed Disclaimer

Publication types

Substances