Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jul;28(1):75-90.
doi: 10.1080/09553007514550781.

The relationship between chromosome aberrations and low LET radiation dose to human lymphocytes

The relationship between chromosome aberrations and low LET radiation dose to human lymphocytes

D C Lloyd et al. Int J Radiat Biol Relat Stud Phys Chem Med. 1975 Jul.

Abstract

In vitro dose-response curves of unstable chromosome aberrations in human lymphocytes have been obtained for 250 kV X-rays and cobalt-60gamma-radiation. The aberration yields have been fitted to the quadratic function Y = alphaD +betaD2, which is consistent with the single-track and two-track model for aberration formation. The values of the coefficients alpha and beta support the hypothesis that the dose-rate effect is limited to the D2 term. The main difference between the coefficients for X- and gamma-radiation is in the alpha values, indicating that X-rays are slightly more efficient, at lower doses, in producing two lesions with a single ionizing track. The lower limits of dose estimate, with 500 cells analysed, are 4 rad for X-rays and 10 rad gamma-radiation. Further evidence is presented confirming that, for cytogenetic dosimetry, in vitro dose-response curves should be prepared by irradiating whole blood maintained at 37 degrees C and prior to PHA stimulation. Curves were plotted showing the variation of the number of cells without aberrations with radiation dose and the shape of these curves were compared with those from human cell survival experiments.

PubMed Disclaimer

Substances