The electrostatics of lipid surfaces
- PMID: 10810922
- DOI: 10.1016/s0009-3084(99)00052-3
The electrostatics of lipid surfaces
Abstract
Charged lipids constitute a substantial fraction of all membrane lipids. Their charges vary in quantity and distribution within their headgroup regions. In long range interactions, their charges' value and electrostatic potential in the vicinity of the membrane surface can be approximated by the Guy-Chapman theory. This theory treats the interface as a charged structureless plain surrounded by uniform environments. However, if one considers intermolecular interactions, such assumptions need to be revised. The interface is in reality a thick region containing the residual charges of lipid headgroups. Their arrangement depends on the type of lipid present in the membrane. The variety of lipids and their biological functions suggests that charge distribution determines the extent and type of interaction with surface associated molecules. Numerous examples show that protein behavior at the lipid bilayer surface is determined by the type of lipid present, indicating protein specificity towards certain surface locations and local properties (determined by lipid composition) of a particular type. Such specificity is achieved by a combination of electrostatic, hydrophobic and enthropic effects. Comparing lipid biological activity, it can be stated that residual charge distribution is one of the factors of intermolecular recognition leading to the specific interaction of lipid molecules and selected proteins in various processes, particularly those involved with signal transduction pathways. Such specificity enables a variety of processes occurring simultaneously on the same membrane surface to function without cross-reaction interference.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources