Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 1;60(9):2497-503.

Role of extracellular matrix assembly in interstitial transport in solid tumors

Affiliations
  • PMID: 10811131

Role of extracellular matrix assembly in interstitial transport in solid tumors

P A Netti et al. Cancer Res. .

Abstract

The extracellular matrix (ECM) may contribute to the drug resistance of a solid tumor by preventing the penetration of therapeutic agents. We measured differences in interstitial resistance to macromolecule (IgG) motion in four tumor types and found an unexpected correspondence between transport resistance and the mechanical stiffness. The interstitial diffusion coefficient of IgG was measured in situ by fluorescence redistribution after photobleaching. Tissue elastic modulus and hydraulic conductivity were measured by confined compression of excised tissue. In apparent contradiction to an existing paradigm, these functional properties are correlated with total tissue content of collagen, not glycosaminoglycan. An extended collagen network was observed in the more penetration-resistant tumors. Collagenase treatment of the more penetration-resistant tumors significantly increased the IgG interstitial diffusion rate. We conclude that collagen influences the tissue resistance to macromolecule transport, possibly by binding and stabilizing the glycosaminoglycan component of the ECM. These findings suggest a new method to screen tumors for potential resistance to macromolecule-based therapy. Moreover, collagen and collagen-proteoglycan bonds are identified as potential targets of treatment to improve macromolecule delivery.

PubMed Disclaimer

Publication types

LinkOut - more resources