Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 28;275(30):22955-60.
doi: 10.1074/jbc.M002768200.

Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus

Affiliations
Free article

Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus

S Chen et al. J Biol Chem. .
Free article

Abstract

The uptake of radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) by protoplasts isolated from leaves of Brassica napus was detected using silicone oil filtration technique. The uptake was pH-dependent with higher uptake rates at acidic pH. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of p-OHBG, which was inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone, indicating that the uptake is dependent on a proton motive force. Dissipation of the internal positive membrane potential generated a small influx as compared with that seen for pH gradient (DeltapH). Kinetic studies demonstrated the presence of two uptake systems, a saturable and a linear component. The saturable kinetics indicated carrier-mediated translocation with a K(m) of 1.0 mm and a V(max) of 28.7 nmol/microl/h. The linear component had very low substrate affinity. The carrier-mediated transport had a temperature coefficient (Q(10)) of 1.8 +/- 0.2 in the temperature range from 4-30 degrees C. The uptake was against a concentration gradient and was sensitive to protonophores, uncouplers, H(+)-ATPase inhibitors, and the sulfhydryl group modifier p-chloromercuriphenylsulfonic acid. The carrier-mediated uptake system had high specificity for glucosinolates because glucosinolate degradation products, amino acids, sugars, or glutathione conjugates did not compete for p-OHBG uptake. Glucosinolates with different side chains were equally good competitors of p-OHBG uptake, which indicates that the uptake system has low specificity for the glucosinolate side chains. Our data provide the first evidence of an active transport of glucosinolates by a proton-coupled symporter in the plasma membrane of rape leaves.

PubMed Disclaimer

Publication types

LinkOut - more resources