Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 27;11(6):1231-5.
doi: 10.1097/00001756-200004270-00018.

Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol

Affiliations
Free article

Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol

M Beltramo et al. Neuroreport. .
Free article

Abstract

The human astrocytoma cell line CCF-STTGI accumulates [3H]2-AG through an Na(+)- and energy-independent process, with a Km of 0.7 +/- 0.1 microM. Non-radioactive 2-AG, anandamide or the anandamide transport inhibitor 4-hydroxyphenyl arachidonamide inhibit [3H]2-AG uptake with half-maximal inhibitory concentrations (IC50) of 5.5 +/- 1.0 microM, 4.2 +/- 0.3 microM and 1.8 = 0.1 microM, respectively. A variety of lipid transport substrates and inhibitors interfere with neither [3H]2-AG nor [3H]anandamide uptake. These results suggest that 2-AG and anandamide are internalized in astrocytoma cells through a common carrier-mediated mechanism. After incubation with [3H]2-AG, radioactivity is recovered in phospholipids, monoacylglycerols (unmetabolized [3H]2-AG), free fatty acids ([3H]arachidonate) and, to a minor extent, diacylglycerols and triacylglycerols. Arachidonic acid (100 microM) and triacsin C (10 microM), an acyl-CoA synthetase inhibitor, prevent incorporation of [3H]arachidonic acid in phospholipids and significantly reduce [3H]2-AG transport. Thus, the driving force for 2-AG internalization may derive from the hydrolysis of 2-AG to arachidonate and the subsequent incorporation of this fatty acid into phospholipids.

PubMed Disclaimer

Publication types

MeSH terms