Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun;28(6):655-60.

Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes

Affiliations
  • PMID: 10820137

Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes

E F Choo et al. Drug Metab Dispos. 2000 Jun.

Abstract

HIV protease inhibitors have proven remarkably effective in treating HIV-1 infection. However, some tissues such as the brain and testes (sanctuary sites) are possibly protected from exposure to HIV protease inhibitors due to drug entry being limited by the membrane efflux transporter P-glycoprotein, located in the capillary endothelium. Intravenous administration of the novel and potent P-glycoprotein inhibitor LY-335979 to mice (1-50 mg/kg) increased brain and testes concentration of [(14)C]nelfinavir, up to 37- and 4-fold, respectively, in a dose-dependent fashion. Similar effects in brain levels were also observed with (14)C-labeled amprenavir, indinavir, and saquinavir. Because [(14)C]nelfinavir plasma drug levels were only modestly increased by LY-335979, the increase in brain/plasma and testes/plasma ratios of 14- to 17- and 2- to 5-fold, respectively, was due to increased tissue penetration. Less potent P-glycoprotein inhibitors like valspodar (PSC-833), cyclosporin A, and ketoconazole, as well as quinidine and verapamil, had modest or little effect on brain/plasma ratios but increased plasma nelfinavir concentrations due to inhibition of CYP3A-mediated metabolism. Collectively, these findings provide "proof-of-concept" for increasing HIV protease inhibitor distribution into pharmacologic sanctuary sites by targeted inhibition of P-glycoprotein using selective and potent agents and suggest a new therapeutic strategy to reduce HIV-1 viral replication.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources