Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;35(2):105-40.

Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation

Affiliations
  • PMID: 10821479
Review

Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation

L Hanley-Bowdoin et al. Crit Rev Biochem Mol Biol. 2000.

Abstract

Geminiviruses have small, single-stranded DNA genomes that replicate through double-stranded intermediates in the nuclei of infected plant cells. Viral double-stranded DNA also assembles into minichromosomes and is transcribed in infected cells. Geminiviruses encode only a few proteins for their replication and transcription and rely on host enzymes for these processes. However, most plant cells, which have exited the cell cycle and undergone differentiation, do not contain the replicative enzymes necessary for viral DNA synthesis. To overcome this barrier, geminiviruses induce the accumulation of DNA replication machinery in mature plant cells, most likely by modifying cell cycle and transcriptional controls. In animals, several DNA viruses depend on host replication and transcription machinery and can alter their hosts to create an environment that facilitates efficient viral replication. Analysis of these viruses and their proteins has contributed significantly to our understanding of DNA replication, transcription, and cell cycle regulation in mammalian cells. Geminiviruses have the same potential for plant systems. Plants offer many advantages for these types of studies, including ease of transformation, well-defined cell populations and developmental programs, and greater tolerance of cell cycle perturbation and polyploidy. Our knowledge of the molecular and cellular events that mediate geminivirus infection has increased significantly during recent years. The goal of this review is to summarize recent research addressing geminivirus DNA replication and its integration with transcriptional and cell cycle regulatory processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources