Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 11;275(32):24407-13.
doi: 10.1074/jbc.M909771199.

Constitutive activation of STAT5 by a point mutation in the SH2 domain

Affiliations
Free article

Constitutive activation of STAT5 by a point mutation in the SH2 domain

K Ariyoshi et al. J Biol Chem. .
Free article

Abstract

We previously identified a constitutively active form of STAT (signal transducer and activator of transcription) 5A by polymerase chain reaction-driven random mutagenesis followed by retrovirus-mediated expression screening, which had two point mutations in the DNA-binding and transcriptional activation domains, and was designated STAT5A1*6. STAT5A1*6 showed markedly elevated DNA binding and transactivation activities with stable tyrosine phosphorylation and nuclear accumulation, and conferred autonomous cell growth on interleukin 3-dependent Ba/F3 cells. We now report another constitutively active mutant, STAT5A-N642H which has a single point mutation (N642H) in its SH2 domain, identified using the same strategy as that used to identify STAT5A1*6. STAT5A-N642H showed identical properties to those of STAT5A1*6 both biochemically and biologically. Interestingly the mutation in STAT5A-N642H resulted in restoration of the conserved critical histidine which is involved in the binding of phosphotyrosine in the majority of SH2-containing proteins. Introduction of an additional mutation (Y694F) to STAT5A-N642H, which disrupted critical tyrosine 694 required for dimerization of STAT5, abolished all the activities manifested by the mutant STAT5A-N642H, which indicates that dimerization is required for the activity of STAT5A-N642H as was the case for the wild-type STAT5A. The present findings also show that different mutations rendered STAT5A constitutively active, through a common mechanism, which is similar to that of physiological activation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources