Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jun 30;90(1-3):19-25.
doi: 10.1016/s0167-0115(00)00105-1.

Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors

Affiliations
Review

Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors

S Dimmeler et al. Regul Pept. .

Abstract

Reactive oxygen species (ROS) are known to induce apoptotic cell death in various cell types. In the vessel wall, ROS can be formed by macrophages within the atherosclerotic plaque or can act on the endothelium after adhesion of monocytes or leucocytes. Moreover, ROS are endogenously synthesized by endothelial and vascular smooth muscle cells by NAD(P)H oxidase. Enhanced ROS production is a very early hallmark in the atherogenic process, suggesting a link between ROS and apoptosis. In endothelial cells, the endogenous generation of ROS is induced by different pro-inflammatory and pro-atherosclerotic factors such as Ang II, oxLDL or TNFalpha, which all promote the execution of programmed cell death. ROS synthesis is thereby causally involved in apoptosis induction, because antioxidants prevent endothelial cell death. The pro-apoptotic effects of endogenous ROS in endothelial cells mechanistically seems to involve the disturbance of mitochondrial membrane permeability followed by cytochrome c release, which finally activates the executioner caspases. In contrast to the pro-apoptotic capacity of ROS in endothelial cells, in vascular smooth muscle cells emerging evidence suggests that endogenous ROS synthesis promotes cell proliferation and hypertrophy and does not affect cell survival. However, high concentrations of exogenous ROS can also stimulate smooth muscle cell apoptosis as shown for other cell types probably via activation of p53. Taken together, the double-edged effects of endogenously derived ROS in endothelial cells versus VSMC may provide a mechanistic clue to the anti-atherosclerotic effects of antioxidants shown in experimental studies, given that the promotion of endothelial survival in combination with inhibition of VSMC proliferation blocks two very important steps in the pathogenesis of atherosclerosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources