Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 15;275(37):28810-5.
doi: 10.1074/jbc.M003090200.

Induction of persistent sodium current by exogenous and endogenous nitric oxide

Affiliations
Free article

Induction of persistent sodium current by exogenous and endogenous nitric oxide

G P Ahern et al. J Biol Chem. .
Free article

Abstract

Most voltage-gated Na(+) channels inactivate almost completely at depolarized membrane potentials, but in some cells a residual Na(+) current is seen that is resistant to inactivation. This persistent Na(+) current can have a profound impact on the electrical behavior of excitable cells, and the regulation of this property could have important biological consequences. However, the biological signaling mechanisms that regulate the persistence of Na(+) channels are not well understood. This study showed that in nerve terminals and ventricular myocytes nitric oxide (NO) reduced the inactivation of Na(+) current. This effect was independent of cGMP, was blocked by N-ethylmaleimide, and could be elicited in cell-free outside-out patches. Thus, a reactive nitrogen species acts directly on the channel or closely associated protein. Persistent Na(+) current could also be induced by endogenous NO generated enzymatically by NO synthase (NOS). Application of ionomycin to raise the intracellular Ca(2+) concentration in myocytes activated NOS. The NO produced in response to ionomycin was detected with an NO-sensitive fluorescent dye. Persistent Na(+) current was enhanced by the same treatment, and NOS inhibitors abolished both the elevation of NO and the induction of persistent Na(+) current. These experiments show that NO is a potential endogenous regulator of persistent Na(+) current under physiological and pathophysiological conditions.

PubMed Disclaimer

Publication types

LinkOut - more resources