Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun;278(6):C1116-25.
doi: 10.1152/ajpcell.2000.278.6.C1116.

Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+)

Affiliations
Free article

Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+)

W Erl et al. Am J Physiol Cell Physiol. 2000 Jun.
Free article

Abstract

Pyrrolidine dithiocarbamate (PDTC) has been found to induce or inhibit apoptosis in different cell types. Here we show that PDTC dose-dependently reduced the viability of rat smooth muscle cells (rSMC), human fibroblasts, and endothelial cells at low but not at high cell density. Endothelial cells were least sensitive, fibroblasts showed a medium sensitivity, and rSMC showed a high sensitivity to PDTC-mediated cell death. An early reduction in the mitochondrial membrane potential indicated a rapid onset of apoptosis in rSMC. Apoptosis was further confirmed by annexin V staining and DNA fragmentation analysis. Gel shift analysis demonstrated increased nuclear factor (NF)-kappaB activity in high-density rSMC compared with low-density cells. NF-kappaB has recently been shown to regulate the induction of anti-apoptotic proteins. Although PDTC is widely used as an inhibitor for NF-kappaB and a radical scavenger, our data show that PDTC rather enhanced NF-kappaB activity and, alone or in combination with menadione, induced oxygen radical generation. Notably, PDTC failed to reduce rSMC viability in medium without Cu(2+) or Zn(2+), and addition of Cu(2+) or Zn(2+) resulted in a dose-dependent increase in PDTC-induced cell death. Addition of both Cu(2+) and Zn(2+) showed synergistic effects. Our results indicate that the induction of apoptosis by PDTC requires Cu(2+) and Zn(2+) and is dependent on cell type and density. Such differential effects may have implications for studies of PDTC as an anti-atherosclerotic or immunomodulatory drug.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources