Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jun;64(2):281-315.
doi: 10.1128/MMBR.64.2.281-315.2000.

Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast

Affiliations
Review

Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast

V Contamine et al. Microbiol Mol Biol Rev. 2000 Jun.

Abstract

Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.

PubMed Disclaimer

References

    1. Ackerman S H, Gatti D L, Gellefors P, Douglas M G, Tzagoloff A. ATP13, a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. FEBS Lett. 1991;278:234–238. - PubMed
    1. Ackerman S H, Martin J, Tzagoloff A. Characterization of ATP11 and detection of the encoded protein in mitochondria of Saccharomyces cerevisiae. J Biol Chem. 1992;267:7386–7394. - PubMed
    1. Ackerman S H, Tzagoloff A. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proc Natl Acad Sci USA. 1990;87:4986–4990. - PMC - PubMed
    1. Ackerman S H, Tzagoloff A. ATP10, a yeast nuclear gene required for the assembly of the mitochondrial F1-F0 complex. J Biol Chem. 1990;265:9952–9959. - PubMed
    1. Arlt H, Tauer R, Feldmann H, Neupert W, Langer T. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell. 1996;85:875–885. - PubMed

MeSH terms

LinkOut - more resources