Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun;92(6):1603-16.
doi: 10.1097/00000542-200006000-00017.

Response surface model for anesthetic drug interactions

Affiliations

Response surface model for anesthetic drug interactions

C F Minto et al. Anesthesiology. 2000 Jun.

Abstract

Background: Anesthetic drug interactions traditionally have been characterized using isobolographic analysis or multiple logistic regression. Both approaches have significant limitations. The authors propose a model based on response-surface methodology. This model can characterize the entire dose-response relation between combinations of anesthetic drugs and is mathematically consistent with models of the concentration-response relation of single drugs.

Methods: The authors defined a parameter, theta, that describes the concentration ratio of two potentially interacting drugs. The classic sigmoid Emax model was extended by making the model parameters dependent on theta. A computer program was used to estimate response surfaces for the hypnotic interaction between midazolam, propofol, and alfentanil, based on previously published data. The predicted time course of effect was simulated after maximally synergistic bolus dose combinations.

Results: The parameters of the response surface were identifiable. With the test data, each of the paired combinations showed significant synergy. Computer simulations based on interactions at the effect site predicted that the maximally synergistic three-drug combination tripled the duration of effect compared with propofol alone.

Conclusions: Response surfaces can describe anesthetic interactions, even those between agonists, partial agonists, competitive antagonists, and inverse agonists. Application of response-surface methodology permits characterization of the full concentration-response relation and therefore can be used to develop practical guidelines for optimal drug dosing.

PubMed Disclaimer

Similar articles

Cited by

Publication types