Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells
- PMID: 10841777
- DOI: 10.1021/bi000169p
Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells
Abstract
Several lines of evidence suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of Alzheimer's disease (AD). Amyloid beta-protein (Abeta) that composes senile plaques, a major neuropathological hallmark of AD, is considered to have a causal role in AD. Thus, we have studied the effect of oxidative stress on Abeta metabolism within the cell. Here, we report that oxidative stress induced by H(2)O(2) (100-250 microM) caused an increase in the levels of intracellular Abeta in human neuroblastoma SH-SY5Y cells. Treatment with 200 microM H(2)O(2) caused significant decreases in the protein levels of full-length beta-amyloid precursor protein (APP) and its COOH-terminal fragment that is generated by beta-cleavage, while the gene expression of APP was not altered under these conditions. A pulse-chase experiment further showed a decrease in the half-life of this amyloidogenic COOH-terminal fragment but not in that of nonamyloidogenic counterpart in the H(2)O(2)-treated cells. These results suggest that oxidative stress promotes intracellular accumulation of Abeta through enhancing the amyloidogenic pathway.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
